大理大学学报 ›› 2025, Vol. 10 ›› Issue (8): 1-10.DOI: 10. 3969 / j. issn. 2096-2266. 2025. 08. 001

• 药学 •    下一篇

艾叶陈化过程颜色与化学成分的变化规律研究

杨丹丹1,黄浩洲2,3,包晓明4,杨 明1,张定堃2,3*   

  1. (1. 江西中医药大学现代中药制剂教育部重点实验室,南昌 330004; 2. 成都中医药大学药学院,
    成都 611137; 3. 成都中医药大学西南特色中药资源国家重点实验室,成都 611137;
    4. 岛津企业管理(中国)有限公司,成都 610023)
  • 收稿日期:2025-02-07 修回日期:2025-02-27 出版日期:2025-08-15 发布日期:2025-09-06
  • 通讯作者: 张定堃,教授,博士,E-mail:zhangdingkun@cdutcm.edu.cn。
  • 作者简介:杨丹丹,硕士研究生,主要从事中药制药新技术研究。
  • 基金资助:
    国家自然科学基金项目(82074026)

Changes in Color and Chemical Components during the Aging Process of Artemisia argyi Leaves

Yang Dandan1, Huang Haozhou2, 3, Bao Xiaoming4, Yang Ming1, Zhang Dingkun2, 3*   

  1. (1. Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Jiangxi University of Traditional Chinese Medicine,
    Nanchang 330004, China; 2. Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China;
    3. State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine,
    Chengdu 611137, China; 4. Shimadzu Enterprise Managemen(t China) Co., Ltd., Chengdu 610023, China)
  • Received:2025-02-07 Revised:2025-02-27 Online:2025-08-15 Published:2025-09-06

摘要: 目的:探究艾叶在自然陈化过程中颜色、挥发性成分及非挥发性成分的动态变化规律,阐明其化学成分转化机制,为艾叶
品质评价与陈化工艺优化提供科学依据。方法:以不同陈化年份的艾叶为研究对象,采用色差仪测定颜色参数表征颜色变化,
采用水蒸气蒸馏法提取艾叶挥发油并计算得率;采用气相色谱-质谱(GC-MS)联用结合正交偏最小二乘判别分析(OPLS-DA)
解析挥发性成分的组成及差异;采用高效液相色谱(HPLC)定量分析新绿原酸、绿原酸等5种非挥发性成分。结果:随着陈化
时间延长,艾叶颜色由绿色逐渐转变为黄褐色,挥发油得率明显下降。GC-MS共鉴定出92种挥发性成分,其中烯类和醇类占
比最高,OPLS-DA筛选出20种差异性成分,龙脑、甲基丁香酚、对伞花烃-8-醇、二氢香芹酮、α-侧柏酮含量随陈化时间延长显
著增加。在非挥发性成分中,酚酸类成分的降解速度快于黄酮类成分。结论:艾叶陈化是挥发性成分转化、非挥发性成分降解
及理化性质协同作用的结果,龙脑等成分的生成揭示了化学转化的复杂性,颜色变化可直观指示陈化程度,研究结果为艾叶品
质评价体系的建立和陈化工艺的优化提供了科学依据,也为理解“陈久者良”的传统观念提供了现代科学解释。

关键词: 艾叶, 陈化, 挥发油, 化学成分, 颜色变化

Abstract: Objective: To investigate the dynamic changes in color, volatile and non-volatile components of Artemisia argyi leaves
during natural aging, and clarify the mechanism of chemical component transformation, providing a scientific basis for quality
evaluation and optimization of the aging process. Methods: A. argyi leaves of different aging years were used as the research object.
The color change was characterized by measuring the color parameters using a colorimeter. The volatile oil of A. argyi leaves was
extracted by steam distillation and the yield was calculated.Gas chromatogram-mass spectrometry (GC-MS) combined with orthogonal
partial least squares discriminant analysis (OPLS-DA) was applied to analyze the composition and differences of volatile components.
High-performance liquid chromatography (HPLC) was used to quantify five non-volatile components, including neochlorogenic acid
and chlorogenic acid. Results: With the prolongation of aging time, the color of A. argyi leaves gradually shifted from green to
yellowish-brown, and the volatile oil yield significantly decreased. GC-MS identified 92 volatile components, among which alkenes
and alcohols were the major components. OPLS-DA screened out 20 differential components, with contents of borneol, methyl eugenol,
p-cymen-8-ol, dihydrocarvone, and α-thujone increasing significantly. For non-volatile components, phenolic acids degraded faster
than flavonoids. Conclusion: The aging of A. argyi leaves is driven by the synergistic effects of volatile component transformation, nonvolatile
component degradation, and physicochemical changes. The formation of compounds like borneol reveals the complexity of
chemical conversion, while color changes serve as a visual indicator of aging progression. These findings provide a scientific basis for
establishing a quality evaluation system and optimizing the aging process, and offer a modern scientific interpretation of the traditional
concept "the longer the aging, the better the efficacy".

Key words: Artemisia argyi leaves, aging, volatile oil, chemical components, color change

中图分类号: